Apprendre·Chez les chercheurs·Culture mathématique·Expo de maths·histoire des maths·Je suis fan·Lire·Maths et société

Langage et mathématiques

Sur Images des mathématiques, site du CNRS, vous pourrez lire le feuilleton de l’été, intitulé mathématiques et langage. Des articles courts, accessibles et intéressants le composent. Cette série de textes a été écrite par des scientifiques d’horizons divers à l’occasion du Forum Mathématiques vivantes en mars 2017). On y parle enseignement des maths, recherche, informatique, linguistique, histoire ou philosophie. Mon préféré est ici,mais le mieux est de tous les lire !

Quelques extraits :

Depuis la fin du XVIe, les textes mathématiques passent d’une écriture en langue commune à une écriture de plus en plus symbolique et les mathématiques actuelles ne se parlent pas mais s’écrivent. Preuve en est le combat des mathématicien-ne-s dans les universités ou laboratoires de recherche pour disposer de tableaux, en l’absence desquels ils sont incapables de communiquer ! Cette écriture mathématique est extrêmement synthétique mais elle permet d’énoncer les résultats et de présenter les démonstrations à la fois sur un volume de pages écrites qui reste raisonnable et avec la précision nécessaire à une démarche totalement formalisée. On écrira par exemple :

Capture d_écran 2017-08-10 à 18.12.59

au lieu de « la racine carrée de l’inverse du carré de tout nombre réel non nul est égale à l’inverse de la valeur absolue de ce nombre ». Les mathématicien-ne-s du monde entier comprendront le premier énoncé et seul-e-s les francophones comprendront le deuxième. Nous avons donc là un langage universel.

Bertrand Jouve

Dans le premier {point de vue}, les mathématiques ne seraient qu’un jeu qui manipule des mots en respectant une grammaire rigide. Hilbert, au début du vingtième siècle, affirmait qu’on pouvait changer les mots « point, droite, plan » et les remplacer par « table, chaise, verre de bière » et que les théorèmes selon lesquels « par deux tables passe une chaise » et que « l’intersection de deux verres de bière est une chaise » seraient tout à fait justifiés. D’ailleurs, sans aller jusque là, la géométrie moderne utilise des objets appelés « immeubles, appartements et chambres » qui ont des propriétés étranges, telles par exemple que « par deux chambres passe au moins un appartement ».

Étienne Ghys

L’image des mathématiques comme une merveilleuse construction humaine ne me paraît pas diminuer leur importance et leur valeur, au contraire.

Jean-Pierre Kahane

 

Activité rigolote·Apprendre·Au collège·Chez les chercheurs·Chez les collègues·Culture mathématique·En classe·Formation·histoire des maths·Je suis fan·Maths et arts·Maths pour tous·Non classé·Sixième

L’IREM le Limoges, Léonardo et mes 6èmes

Lors du séminaire sur le cycle 3 à Poitiers en juin, j’ai suivi un (super) atelier de l’IREM de Limoges, animé par Marc MOYON (Université de Limoges), Chantal Fourest (Collège d’Arsonval – Brive) et David Somdecoste (École Louis Pons – Brive).

Cet atelier m’a permis de mettre en pratique une activité dès mon retour, avec mes élèves de sixième, et je l’ai intégré à ma séquence n°2 de sixième pour l’année prochaine. J’ai reçu des questions sur cette activité, alors je vous présente ce que j’en ai fait, grâce aux collègues qui sont à l’origine de l’idée. L’atelier avait trois objectifs principaux : proposer de nouveaux supports d’enseignement pour le cycle 3 en intégrant une perspective historique, proposer des pistes de liaison entre l’école et le collège pour l’enseignement de la géométrie et réfléchir autour de l’introduction d’une perspective historique dans une progression annuelle d’un enseignant de mathématiques. Le descriptif de l’ailier est ici.

Les trois collègues qui ont présenté cet atelier sont enthousiastes, simples et concrets. Trois qualités vraiment agréables et motivantes. Je me permets d’indiquer le lien qui présente leurs travaux , car je l’avais dans mes notes mais je suis parvenue sur la page par moi-même de trois façons différentes, ce qui m’assure que ces contenus sont en libre accès. Allez-y : les documents sont top, téléchargeables, et, cerise sur le gâteau, les deux enseignants (de CM2 et de 6ème) ont mis en ligne des productions d’élèves.

Pour ma part, voici ce que j’ai fait avec mes sixièmes et que je compte réitérer, car la séance avait très bien fonctionné : j’ai commencé par distribuer aux élèves la fiche que j’ai mise en ligne dans l’article sur la séquence n°2 de sixième, et qui est très très très inspirée de celle des collègues de l’atelier. Nous avons un peu parlé de Léonard de Vinci, et j’ai projeté quelques-unes de ses oeuvres.

Ensuite, j’ai proposé aux élèves la même image déclenchante que les collègues vus en atelier :

doc_declenchant_1 Les élèves devaient reproduire la partie supérieure de la figure. je les ai laissés travailler, et nous avons ensuite comparé les productions pour essayer de dégager des critères de validation et d’invalidation.

Une fois ces critères définis, chacun s’est remis à l’ouvrage, en recommençant sa figure ou en aidant son camarade à la réaliser « correctement », de sorte que chacun dispose d’une figure « juste ».

Après cette étape, j’ai demandé aux élèves de rédiger, en binôme ou en îlot, un programme de construction. Comme nous avions déjà beaucoup travaillé avec ma collègue de l’ESPE sur les programmes de construction, avec des coûts associés aux instruments, les élèves sont tout de suite partis sur des réflexions assez expertes, de mon point de vue.

La fin de la séquence (une séance de deux heures d’affilée) a été différenciée, car les élèves progressent à des vitesses très différentes les uns des autres dans les constructions comme dans les travaux d’écriture. Au final, tous ont fait la construction d’une autre figure, celle-ci :

figure_a_reproduire_1

Plusieurs groupes ont eu le temps d’écrire le programme de construction, et quatre groupes se sont lancés dans le même travail avec d’autres figures, choisies sur le grand format qui en regroupait des tas.

Au final, voici les plus-values que j’ai pu identifier à la suite de cette séance :

  • l’aspect historique a en même temps enrichi culturellement les élèves et les a motivés
  • c’est un très très bon contenu pour faire manipuler en géométrie
  • le travail d’écriture et d’algorithmie du programme de construction est passé plus facilement que d’habitude, mais peut-être était-ce parce que c’était la fin de l’année et que nous avions pas mal travaillé sur ces compétences au fil de l’eau.

La séance suivante, les élèves m’ont réclamé de continuer. Même des élèves qui ronchonnent lorsqu’il s’agit de construire des figures étaient partants. Mais j’avais prévu autre chose, d’autant que cette activité était tout à fait imprévue… Cependant je suis contente de l’avoir essayée rapidement, car ainsi je l’ai intégrée directement à mes pratiques, alors que sinon je risquais de l’oublier dans mes nombreuses pages de notes de découvertes de l’année…

Culture mathématique·Je suis fan·Maths pour tous

Ouaaaaaaaaaaah mais pourquoi si loin ???

Un chocolatier de Séoul, Ko Eun Su, a créé des chocolats décorés de formules mathématiques… Et il a associé un petit document explicatif de chacune des formules.

chocolate1

Voici ce que Ko Eun Su a écrit sur ces chocolats, sur la page Facebook de sa boutique, Piaf artisan chocolatier :

Capture d’écran 2017-08-02 à 19.12.04.png

Ah zut, je ne lis pas le coréen. Et je n’irai très probablement jamais à Séoul… Crotte zut flûte. Mais même si je n’ai pas compris, j’ai bien vu que ses chocolats sont plébiscités !

Apprendre·Chez les collègues·Culture mathématique·Formation·histoire des maths·Lire·philo et maths

Platon en cours de maths en cycle 3

C’est l’objet du premier atelier que j’ai suivi hier. Il était vraiment intéressant, même si je ne mettrai pas en oeuvre en classe l’activité que je vais résumer. En revanche je vais m’en servir en formation en master 2 enseignement.

Dans ce dialogue, qui correspond aux pages 344 à 352 de l’édition de 1976 chez Flammarion, Socrate interroge un esclave au sujet de la duplication du carré. l’esclave commence par se tromper, en proposant que pour être d’aire double le carré doit avoir le côté double aussi, puis face au questionnement ouvert (enfin, plus ou moins ouvert) de Socrate, il comprend qu’il s’est trompé. Socrate conclut ainsi :

SOCRATE.

Que t’en semble, Menon ? A-t-il {l’esclave} fait une seule réponse qui ne fût son opinion à lui ?

MENON.

Non ; il a toujours parlé de lui-même.

SOCRATE.

Cependant, comme nous le disions tout à l’heure, il ne savait pas.

MENON.

Tu dis vrai.

SOCRATE.

Ces opinions étaient-elles en lui, ou non ?

MENON.

Elles y étaient.

SOCRATE.

Celui qui ignore a donc en lui-même sur ce qu’il ignore des opinions vraies ?

MENON.

Apparemment.

SOCRATE.

Ces opinions viennent de se réveiller en lui comme un songe. Et si on l’interroge souvent et de diverses façons sur les mêmes objets, sais-tu bien qu’à la fin il en aura une connaissance aussi exacte que qui que ce soit ?

MENON.

Cela est vraisemblable.

A partir de ce dialogue, Renaud Chorlay (de l’ESPE de Paris), Alexis Gaudreau (enseignant de mathématiques à Paris) et Dominique Heguiaphal (professeur des écoles à Paris), de la commission inter-IREM Histoire et épistémologie, ont proposé l’atelier « Lire un texte du patrimoine au cycle 3 ».

Après qu’ont été précisés les objectifs et les limites de l’expérimentation, les références à des travaux de chercheurs comme Goigoux et Cèbe, nous avons réfléchi ensemble sur les notions mathématiques rencontrées dans le texte, ou qui peuvent être évoquées à partir de sa lecture. Elles sont nombreuses et en effet correspondent très bien au cycle 3. Ensuite, nos animateurs nous ont questionnés sur les difficultés rencontrées, pour les élèves comme pour nous, à sa lecture. Ces analyses-là étaient déjà très intéressantes en elles-mêmes.

Puis nos trois collègues nous ont présenté leurs fiches de séquences, des fiches outils complètes, et des productions d’élèves, là aussi assorties de propositions d’analyse.

Quel en est mon bilan ?

Premier constat : des ateliers animés par des enseignants, c’est bien aussi… J’avais un peu tendance à sur investir les conférences,à tout miser sur les « stars de la recherche ». Hier, les travaux de ces collègues, comme de ceux de l’atelier de l’après-midi, m’ont vraiment beaucoup apporté. Les deux groupes nous ont présenté un travail pensé de façon profonde, précise, tourné vers les élèves, et étayé par des travaux concrets d’élèves. C’est agréable de rencontrer des formateurs qui ont l’expérience du terrain, qui peuvent décrire leurs observations concrètes. Cela m’a fait pas mal réfléchir quant à mon métier de formatrice (aux retours positifs, lorsqu’il y en a, des enseignants que je peux former. Je comprends mieux ce qu’ils veulent me dire) et à ce que j’ai pu écrire dans mon mémoire de CAFFA.

Deuxième constat : ce travail me laisse vraiment en pleine réflexion. En même temps que je le trouve intéressant (en plus, une activité maths-français qui en est vraiment une, c’est chouette) et que l’expérimentation en elle-même m’intéresse (j’aurais aimé avoir des tas de productions d’élèves devant moi pour m’y plonger et réfléchir), que je voudrais en savoir plus, je ne me vois pas déployer l’activité en classe, pour deux raisons. Je ferai abstraction, dans la suite, de l’argument que j’ai entendu hier dans les rangs des spectateurs : lire ce texte est impossible à des élèves de cycle 3. Je ne le crois pas. Cette lecture va prendre un temps très variable selon le public bien sûr, mais comme l’a dit hier Renaud Chorlay, c’est une question d’accompagnement. Et en effet, les fiches de travail font la part belle à la lecture, la compréhension du texte, la reformulation. Une autre remarque, faite par un inspecteur général présent, concernait la phase d’institutionnalisation, et m’a rappelé tout de suite une remarque similaire d’un de mes IPR la semaine dernière : quid de la trace écrite, de la reformulation de ce qu’on visait comme objectif ? Les élèves savent-ils ce qu’ils ont appris ? L’équipe qui présentait était passée par cette phase et n’a pas eu le temps d’approfondir, mais cette remarque de l’IG est vraiment très importante, en ces temps d’expérimentation d’activités interdisciplinaires. Évidemment que lorsque nous proposons une activité aux élèves, nous savons pourquoi et quels objectifs nous visons, mais il faut que ce soit explicite aussi pour eux.

Mes deux raisons à moi sont les suivantes :

  • Dans le texte, une des difficultés est que l’unité de mesure de longueur, le pied, est également utilisée pour mesurer les aires. Il me semble que les élèves de cycle 3 mettent difficilement du sens sur nos unités de mesure. Souvent, ils oublient le carré du mètre carré, le cube du mètre cube. Lorsqu’on leur demande de regarder leur résultat, ils corrigent la plupart du temps, mais généralement en s’appuyant sur leur mémoire plus que sur leur compréhension de la signification de ces unités : la prof elle vaut qu’on mette un deux pour les aires, alors je le mets. Mais ont-ils intériorisé pourquoi il faut « mettre le deux » ? Je crains vraiment que travailler avec des pieds de longueur et des pieds d’aire me gêne dans cette lente acquisition du sens des unités. Pourtant, nos intervenants ont expliqué que non, car ils ont explicité ce point avec les élèves. Les expressions « pieds de longueur » et « pieds d’aire » sont d’eux. Sur ce point, j’envisage tout à fait d’avoir tort. Mais je suis frileuse, pour le coup.
  • Deuxième point, le plus important pour moi : vers la fin de la séquence, on demande aux enfants de justifier que la figure obtenue en suivant les instructions de Socrate est un carré. Comme ils ne connaissent pas le théorème de Pythagore (nous sommes au cycle 3), ils ne peuvent pas démontrer. Ce qui est attendu d’eux est donc d’effectuer une vérification de façon instrumentée, avec l’équerre et la règle graduée, par exemple. Et là, ça coince pour moi : en sixième, j’essaie de faire glisser les élèves vers l’argumentation, de passer du perceptif au déductif. Or ici je ne suis pas en mesure d’invoquer les arguments qui seraient utiles. Ça m’embête fort, ça.

Reste que ce temps de formation est passé très vite, trop même, puisque j’aurais aimé des approfondissements et des prolongements. Et je pense utiliser ce support avec mes étudiants de master 2 l’année prochaine : il y matière à réflexion, et une réflexion de bonne qualité. Et puis écouter des collègues investis, motivés, qui travaillent en équipe, c’est revigorant.

 

 

Chez les chercheurs·Culture mathématique·Lire·Maths et arts·Maths et BD·Maths pour tous·Mots de maths·philo et maths

Le scepticisme, qualité mathématique

En route pour un séminaire à Poitiers, j’ai profité du train pour lire. J’avais glissé dans mon sac deux livres, un « livre de matheux » et un « livre normal ». J’ai commencé par le livre de matheux. Il s’agit en fait d’un tout petit ouvrage intitulé Les mathématiques sont la poésie des sciences, qui retranscrit une conférence de Cédric Villani, en mars 2013 à Namur. Le titre est une citation de Senghor.images

L’introduction reprend l’intervention d’Elisa Brune. Elle s’achève sur ces mots :

« Elles (les mathématiques) peuvent aussi gambader en pleine liberté, dans des espaces à trente-six dimensions, dans des nombres imaginaires, et personne ne leur demande de répondre à une expérience faite en laboratoire. 

Pour passer la parole à Cédric Villani, je dirais des mathématiques qu’elles sont la science la plus libre. »

Au début de son intervention, Cédric Villani revient sur certains principes fondamentaux chers aux mathématiciens : le scepticisme a priori, le rejet des arguments d’autorité pour leur préférer la démonstration et le raisonnement logique (« Nul ne détient une parole plus forte que les autres »).

Dans la suite, Cédric Villani dit « Si les mathématiques étaient un art, parmi tous les arts possibles, ce pourrait être le design. En design, comme en mathématiques, on retrouve la même ambivalence, la même dualité – ou dialectique – entre l’harmonie,l’abstraction, l’esthétique et le devoir d’efficacité. (…) Étant partout autour de nous, comme les tables et le mobilier, les mathématiques sont envahissantes, mais elles se font oublier quand elles fonctionnent bien. »

Capture d’écran 2017-06-07 à 21.20.53.png

 

Ensuite, comme le titre de son intervention l’indique, il explore les liens entre mathématiques et poésie. Je suppose que selon le rapport de chacun aux mathématiques et à la poésie on est plus ou moins sensible à tel ou tel de ses arguments ; pour ma part, j’ai d’abord été touchée par le rapport au langage, à la poésie de mots en mathématiques.

J’ai aimé le parallèle tenté par Villani entre l’exercice des mathématiques et un poème de Tennyson, La dame de Shalott. Il explique qu’il aime imaginer « que c’est une allégorie du mathématicien, incapable d’appréhender le monde directement par des expériences comme le fait le mathématicien, et ne pouvant au contraire l’étudier qu’à travers son reflet dans le monde mathématique : les équations. » Cette idée et sa formulation me parlent. Voici un extrait d’une traduction du poème :

 

Là, elle tisse de nuit et de jour

Un tissu magique aux couleurs éclatantes,

Elle a entendu une rumeur dire

Qu’une malédiction s’abattrait sur elle si elle restait

A regarder en bas vers Camelot ;

Elle ne sait pas ce que peut être la malédiction

Et alors elle tisse encore plus.

Elle y voit le grand chemin à proximité

Descendant vers Camelot ;

Et parfois à travers le miroir bleu

Les chevaliers vont à cheval deux par deux.

Elle n’a pas de loyal et fidèle chevalier,

La Dame de Shallot

La suite du petit ouvrage est dans le style habituel de Cédric Villani : c’est agréable à lire, mais ce sont des propos qu’il a déjà tenus dans des ouvrages que j’ai lus ou des conférences auxquelles j’ai assisté. Il se cite d’ailleurs beaucoup lui-même de façon explicite, et tourne beaucoup autour de Poincaré, là aussi comme souvent. Mais la lecture demeure intéressante.

A l'attaque !·Chez les chercheurs·Culture mathématique·Je suis fan·Lire·Maths et arts·Maths pour tous

 » Vous devez apprendre à aimer ce processus « 

Andrew Wiles est le mathématicien qui a prouvé le grand théorème de Fermat, un problème resté sans démonstration pendant des siècles. Dans un entretien lors du Forum des Lauréats Heidelberg en septembre 2016, relayé dans +Plus Magazine et traduit par Julien Keller pour Image des Mathématiques, Andrew Miles parle des maths, de leurs difficultés, de la façon de vivre les maths. Je vous conseille la lecture complète de l’article, vraiment simple et beau.

 » Je pense que beaucoup de gens ont été dégoûtés jeunes des mathématiques. En fait, ce que l’on constate c’est que les enfants ont vraiment du plaisir à faire des mathématiques jusqu’au jour où ils ont une expérience négative. Une mauvaise expérience vient probablement d’un mauvais enseignement ou d’un environnement où les gens ont peur des mathématiques. Mais la plupart des enfants que j’ai rencontrés trouvent les mathématiques très excitantes. Les enfants naissent curieux, et aiment explorer le monde autour d’eux. J’essaye de leur expliquer que les gens qui font vraiment des mathématiques éprouvent un réel plaisir, que c’est une chose passionnante. « 

 » Maintenant, quand vous faites des mathématiques à l’adolescence ou à l’âge adulte, vous devez affronter le fait de rester bloqué. Beaucoup n’arrivent pas à l’accepter. Certains trouvent cela très stressant. Même les gens qui sont très bons en maths ont du mal à s’y faire et ont un sentiment d’échec. Mais cela fait partie du processus naturel et vous devez l’accepter, apprendre à aimer ce processus. Oui, vous ne comprenez pas quelque chose sur le moment, mais vous savez que plus tard vous comprendrez – c’est une étape obligée. (…) Il ne faut pas en avoir peur, tout le monde doit passer par là. « 

 » Dans un certain sens, ce que je combats le plus est cette idée, que vous trouvez par exemple dans le film Will Hunting, que les maths sont un don et que vous avez ou non ce don. Mais, ce n’est pas du tout l’expérience des mathématiciens. Nous trouvons tous les maths difficiles ; en cela nous ne sommes pas différents de quelqu’un qui se bat avec ses exercices de maths au lycée. C’est vraiment la même chose. Nous sommes juste entraînés à gérer le combat sur une plus grande échelle et nous avons acquis une plus grande résistance intérieure aux revers. « 

 » Je pense qu’il n’est pas souhaitable d’avoir une trop bonne mémoire si vous êtes mathématicien. Vous devez avoir une mémoire un peu imparfaite parce que vous avez besoin d’oublier la façon dont vous avez abordé votre problème la dernière fois où vous y avez réfléchi. « 

 » La créativité est l’essence même des mathématiques. Je sais qu’en dehors du monde des mathématiciens, les gens ont des opinions diverses au sujet des maths, se disant « mais tout n’est-il pas déjà connu ? », ou bien « tout ne se déduit-il pas de manière mécanique ? ». Pas du tout, c’est extrêmement créatif. Nous trouvons des solutions complètement inattendues, que ce soit dans nos raisonnements ou dans nos résultats. Oui, pour communiquer nos découvertes aux autres mathématiciens, nous avons besoin de les rendre très formelles et très logiques. Mais ce n’est pas de cette manière que nous créons, ce n’est pas comme cela que nous réfléchissons. «